المنوال بالإنجليزية: Mode هو أحد مقاييس النزعة المركزية الثلاث في الإحصاء إلى جانب الوسط الحسابي والوسيط، الهدف منه هو تحديد القيمة التي تتكرر أكثر من غيرها ضمن مجموعة من البيانات، على سبيل المثال إذا كانت لديك الأعداد: (3، 3، 8، 9، 15، 15، 15، 17، 17، 27، 40، 44، 44) فإن المنوال هو 15 لأنه الأكثر تكرارًا، أمثلة أخرى تُظهر أن المنوال يمكن أن يكون عددًا واحدًا أو أكثر، بحسب توزيع البيانات.

المنوال
فيما يلي الطرق المختلفة لحساب المنوال، حسب طبيعة البيانات:
أولًا إذا كان هناك منوال واحد فقط
- تُرتب البيانات تصاعديًا أو تنازليًا لتسهيل المراقبة.
- تُحدد القيمة التي تظهر أكثر من غيرها هذه هي المنوال.
- مثال: من المجموعة (19، 8، 29، 35، 19، 28، 15)
- ترتيبها: (8، 15، 19، 19، 28، 29، 35)
- المنوال هو 19 لأنه تكرّر مرتين، أكثر من أي قيمة أخرى.
ثانيًا إذا كان هناك منوالين أو أكثر
- قد تتكرر قيمتان أو أكثر بنفس أعلى عدد من المرات.
- إذا ظهرت قيمتان بنفس التكرار الأعلى، المجموعة تُسمّى ثنائية المنوال (bimodal).
- وإذا كانت أكثر من قيمتين، فهي متعددة المنوال (multimodal).
- مثال: في البيانات بعد الترتيب (1، 3، 3، 3، 4، 4، 6، 6، 6، 9)، القيمتان 3 و 6 كلتاهما تكررتا ثلاث مرات، فالمجموعة ثنائية المنوال.
اقرأ أيضًا: تعريف الاحصاء في الرياضيات
ثالثًا طريقة التجميع
- تُستخدم هذه الطريقة عندما تكون كل القيم متقاربة في عدد التكرارات (أو متماثلة) مما يصعب تحديد منوال واضح.
- تُجمّع القيم ضمن فئات (مجموعات) لتسهيل المقارنة.
- يُنظر إلى المجموعة التي تحتوي على أكبر عدد من العناصر، ويُختار منها القيمة التي تقع وسط هذه المجموعة كمنوال تقديري.
رابعًا طريقة بيرسون (للمعطيات المجمّعة أو المبوبة)
- تُستخدم عندما تكون البيانات مرتبة في فئات أو جدول تكراري.
- تستعمل الصيغة: المنوال = أ + (ف₁ / (ف₁ + ف₂)) × ل
- حيث: أ = الحد الأدنى للفئة المنوالية (بداية الفئة التي لها أكبر تكرار).
- ف₁ = تكرار الفئة المنوالية − تكرار الفئة التي قبلها.
- ف₂ = تكرار الفئة المنوالية − تكرار الفئة التي بعدها.
- ل = طول الفئة المنوالية.
- مثال تطبيقي مع جدول لوقت الذهاب للعمل لخمسين شخصًا، تُحدد الفئة المنوالية، ثم تُحسب الفروقات، ثم يُطبَّق القانون للحصول على قيمة المنوال التقديرية.
أمثلة متنوعة على حساب المنوال
- في مجموعة بسيطة من الأعداد، يمكن ترتيبها ثم إيجاد القيمة الأكثر تكرارًا مثل المثال: (8,12,25,8,8,12,25,25,8) المنوال = 8.
- جدول تكراري لنتائج امتحان، حيث تُرى أكثر النتيجات تكرارًا فتكون هي المنوال.
- في بيانات تحتوي على قيم متساوية التكرار أو فئات متقاربة، كما في طول فئة تكرارية معيّنة تُستخدم طريقة بيرسون للحصول على قيمة المنوال بشكل تقديري.
اقرأ أيضًا: يتم اختبار الفرضية عن طريق
المنوال يعد من أهم الأدوات الإحصائية التي تساعدنا على فهم طبيعة البيانات بشكل أوضح، إذ يكشف عن القيمة الأكثر شيوعًا وتكرارًا في مجموعة من الأعداد أو الفئات، وعلى الرغم من بساطته مقارنة بالوسيط أو الوسط الحسابي، إلا أن له دورًا محوريًا في تحليل النتائج وتفسيرها، خاصة عند التعامل مع البيانات الكبيرة أو المجمّعة.